Skip to content

vllm.model_executor.models.kimi_linear

logger module-attribute

logger = init_logger(__name__)

KimiDecoderLayer

Bases: Module

Source code in vllm/model_executor/models/kimi_linear.py
class KimiDecoderLayer(nn.Module):
    def __init__(
        self,
        config: KimiLinearConfig,
        layer_idx: int,
        cache_config: CacheConfig | None = None,
        quant_config: QuantizationConfig | None = None,
        parallel_config: ParallelConfig | None = None,
        model_config: ModelConfig | None = None,
        prefix: str = "",
        **kwargs,
    ) -> None:
        super().__init__()
        self.hidden_size = config.hidden_size

        self.is_moe = config.is_moe

        if config.is_kda_layer(layer_idx):
            self.self_attn = KimiDeltaAttention(
                layer_idx=layer_idx,
                hidden_size=config.hidden_size,
                quant_config=quant_config,
                cache_config=cache_config,
                model_config=config,
                prefix=f"{prefix}.self_attn",
            )
        else:
            self.self_attn = KimiMLAAttention(
                layer_idx=layer_idx,
                hidden_size=self.hidden_size,
                num_heads=config.num_attention_heads,
                quant_config=quant_config,
                cache_config=cache_config,
                model_config=model_config,
                prefix=f"{prefix}.self_attn",
                config=config,
                qk_nope_head_dim=config.qk_nope_head_dim,
                qk_rope_head_dim=config.qk_rope_head_dim,
                v_head_dim=config.v_head_dim,
                q_lora_rank=config.q_lora_rank,
                kv_lora_rank=config.kv_lora_rank,
                use_nope=config.mla_use_nope,
            )

        if (
            self.is_moe
            and config.num_experts is not None
            and layer_idx >= config.first_k_dense_replace
            and layer_idx % config.moe_layer_freq == 0
        ):
            self.block_sparse_moe = KimiMoE(
                config=config,
                quant_config=quant_config,
                prefix=f"{prefix}.block_sparse_moe",
            )
            self.mlp = self.block_sparse_moe
        else:
            self.mlp = KimiMLP(
                hidden_size=self.hidden_size,
                intermediate_size=config.intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                prefix=f"{prefix}.mlp",
            )
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        residual: torch.Tensor | None,
        **kwargs,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        # Self Attention
        if residual is None:
            residual = hidden_states
            hidden_states = self.input_layernorm(hidden_states)
        else:
            hidden_states, residual = self.input_layernorm(hidden_states, residual)

        attn_output = torch.empty_like(hidden_states)
        self.self_attn(
            hidden_states=hidden_states,
            positions=positions,
            output=attn_output,
        )
        hidden_states = attn_output

        # Fully Connected
        hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
        hidden_states = self.mlp(hidden_states)
        return hidden_states, residual

block_sparse_moe instance-attribute

block_sparse_moe = KimiMoE(
    config=config,
    quant_config=quant_config,
    prefix=f"{prefix}.block_sparse_moe",
)

hidden_size instance-attribute

hidden_size = hidden_size

input_layernorm instance-attribute

input_layernorm = RMSNorm(hidden_size, eps=rms_norm_eps)

is_moe instance-attribute

is_moe = is_moe

mlp instance-attribute

mlp = block_sparse_moe

post_attention_layernorm instance-attribute

post_attention_layernorm = RMSNorm(
    hidden_size, eps=rms_norm_eps
)

self_attn instance-attribute

self_attn = KimiDeltaAttention(
    layer_idx=layer_idx,
    hidden_size=hidden_size,
    quant_config=quant_config,
    cache_config=cache_config,
    model_config=config,
    prefix=f"{prefix}.self_attn",
)

__init__

__init__(
    config: KimiLinearConfig,
    layer_idx: int,
    cache_config: CacheConfig | None = None,
    quant_config: QuantizationConfig | None = None,
    parallel_config: ParallelConfig | None = None,
    model_config: ModelConfig | None = None,
    prefix: str = "",
    **kwargs,
) -> None
Source code in vllm/model_executor/models/kimi_linear.py
def __init__(
    self,
    config: KimiLinearConfig,
    layer_idx: int,
    cache_config: CacheConfig | None = None,
    quant_config: QuantizationConfig | None = None,
    parallel_config: ParallelConfig | None = None,
    model_config: ModelConfig | None = None,
    prefix: str = "",
    **kwargs,
) -> None:
    super().__init__()
    self.hidden_size = config.hidden_size

    self.is_moe = config.is_moe

    if config.is_kda_layer(layer_idx):
        self.self_attn = KimiDeltaAttention(
            layer_idx=layer_idx,
            hidden_size=config.hidden_size,
            quant_config=quant_config,
            cache_config=cache_config,
            model_config=config,
            prefix=f"{prefix}.self_attn",
        )
    else:
        self.self_attn = KimiMLAAttention(
            layer_idx=layer_idx,
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
            quant_config=quant_config,
            cache_config=cache_config,
            model_config=model_config,
            prefix=f"{prefix}.self_attn",
            config=config,
            qk_nope_head_dim=config.qk_nope_head_dim,
            qk_rope_head_dim=config.qk_rope_head_dim,
            v_head_dim=config.v_head_dim,
            q_lora_rank=config.q_lora_rank,
            kv_lora_rank=config.kv_lora_rank,
            use_nope=config.mla_use_nope,
        )

    if (
        self.is_moe
        and config.num_experts is not None
        and layer_idx >= config.first_k_dense_replace
        and layer_idx % config.moe_layer_freq == 0
    ):
        self.block_sparse_moe = KimiMoE(
            config=config,
            quant_config=quant_config,
            prefix=f"{prefix}.block_sparse_moe",
        )
        self.mlp = self.block_sparse_moe
    else:
        self.mlp = KimiMLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
            quant_config=quant_config,
            prefix=f"{prefix}.mlp",
        )
    self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
    self.post_attention_layernorm = RMSNorm(
        config.hidden_size, eps=config.rms_norm_eps
    )

forward

forward(
    positions: Tensor,
    hidden_states: Tensor,
    residual: Tensor | None,
    **kwargs,
) -> tuple[Tensor, Tensor]
Source code in vllm/model_executor/models/kimi_linear.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
    residual: torch.Tensor | None,
    **kwargs,
) -> tuple[torch.Tensor, torch.Tensor]:
    # Self Attention
    if residual is None:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
    else:
        hidden_states, residual = self.input_layernorm(hidden_states, residual)

    attn_output = torch.empty_like(hidden_states)
    self.self_attn(
        hidden_states=hidden_states,
        positions=positions,
        output=attn_output,
    )
    hidden_states = attn_output

    # Fully Connected
    hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
    hidden_states = self.mlp(hidden_states)
    return hidden_states, residual

KimiLinearForCausalLM

Bases: Module, HasInnerState, SupportsPP, MixtureOfExperts, IsHybrid

Source code in vllm/model_executor/models/kimi_linear.py
class KimiLinearForCausalLM(
    nn.Module, HasInnerState, SupportsPP, MixtureOfExperts, IsHybrid
):
    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()
        self.model_config = vllm_config.model_config
        self.vllm_config = vllm_config
        self.config = self.model_config.hf_config
        quant_config = vllm_config.quant_config
        self.quant_config = quant_config
        self.model = KimiLinearModel(
            vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
        )
        if get_pp_group().is_last_rank:
            self.lm_head = ParallelLMHead(
                self.config.vocab_size,
                self.config.hidden_size,
                quant_config=quant_config,
                prefix=maybe_prefix(prefix, "lm_head"),
            )
        else:
            self.lm_head = PPMissingLayer()
        logit_scale = getattr(self.config, "logit_scale", 1.0)
        self.logits_processor = LogitsProcessor(
            self.config.vocab_size, scale=logit_scale
        )

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.model.get_input_embeddings(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        intermediate_tensors: IntermediateTensors | None = None,
        inputs_embeds: torch.Tensor | None = None,
        **kwargs,
    ) -> torch.Tensor | IntermediateTensors:
        hidden_states = self.model(
            input_ids, positions, intermediate_tensors, inputs_embeds, **kwargs
        )
        return hidden_states

    @classmethod
    def get_mamba_state_dtype_from_config(
        cls,
        vllm_config: "VllmConfig",
    ) -> tuple[torch.dtype, torch.dtype, torch.dtype, torch.dtype]:
        return MambaStateDtypeCalculator.kda_state_dtype(
            vllm_config.model_config.dtype, vllm_config.cache_config.mamba_cache_dtype
        )

    @classmethod
    def get_mamba_state_shape_from_config(
        cls, vllm_config: "VllmConfig"
    ) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
        parallel_config = vllm_config.parallel_config
        hf_config = vllm_config.model_config.hf_config
        tp_size = parallel_config.tensor_parallel_size
        num_spec = (
            vllm_config.speculative_config.num_speculative_tokens
            if vllm_config.speculative_config
            else 0
        )
        return MambaStateShapeCalculator.kda_state_shape(
            tp_size,
            hf_config.linear_attn_config["num_heads"],
            hf_config.linear_attn_config["head_dim"],
            conv_kernel_size=hf_config.linear_attn_config["short_conv_kernel_size"],
            num_spec=num_spec,
        )

    def compute_logits(
        self,
        hidden_states: torch.Tensor,
    ) -> torch.Tensor | None:
        return self.logits_processor(self.lm_head, hidden_states)

    def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
        stacked_params_mapping = [
            # (param_name, shard_name, shard_id)
            (".gate_up_proj", ".gate_proj", 0),
            (".gate_up_proj", ".up_proj", 1),
        ]
        if self.config.is_moe:
            # Params for weights, fp8 weight scales, fp8 activation scales
            # (param_name, weight_name, expert_id, shard_id)
            expert_params_mapping = FusedMoE.make_expert_params_mapping(
                ckpt_gate_proj_name="w1",
                ckpt_down_proj_name="w2",
                ckpt_up_proj_name="w3",
                num_experts=self.config.num_experts,
            )
        else:
            expert_params_mapping = []
        params_dict = dict(self.named_parameters())
        loaded_params: set[str] = set()
        for args in weights:
            name, loaded_weight = args[:2]
            kwargs = args[2] if len(args) > 2 else {}
            if "rotary_emb.inv_freq" in name:
                continue

            spec_layer = get_spec_layer_idx_from_weight_name(self.config, name)
            if spec_layer is not None:
                continue  # skip spec decode layers for main model
            if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
                # Models trained using ColossalAI may include these tensors in
                # the checkpoint. Skip them.
                continue
            for param_name, weight_name, shard_id in stacked_params_mapping:
                if weight_name not in name:
                    continue
                # We have mlp.experts[0].gate_proj in the checkpoint.
                # Since we handle the experts below in expert_params_mapping,
                # we need to skip here BEFORE we update the name, otherwise
                # name will be updated to mlp.experts[0].gate_up_proj, which
                # will then be updated below in expert_params_mapping
                # for mlp.experts[0].gate_gate_up_proj, which breaks load.
                if ("mlp.experts." in name) and name not in params_dict:
                    continue
                name = name.replace(weight_name, param_name)
                # Skip loading extra bias for GPTQ models.
                if name.endswith(".bias") and name not in params_dict:
                    continue
                if is_pp_missing_parameter(name, self):
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(param, loaded_weight, shard_id)
                break
            else:
                for idx, (param_name, weight_name, expert_id, shard_id) in enumerate(
                    expert_params_mapping
                ):
                    if weight_name not in name:
                        continue
                    name = name.replace(weight_name, param_name)
                    if is_pp_missing_parameter(name, self):
                        continue
                    param = params_dict[name]
                    weight_loader = param.weight_loader
                    weight_loader(
                        param,
                        loaded_weight,
                        name,
                        expert_id=expert_id,
                        shard_id=shard_id,
                    )
                    break
                else:
                    # Skip loading extra bias for GPTQ models.
                    if (
                        name.endswith(".bias")
                        and name not in params_dict
                        and not self.config.is_linear_attn
                    ):  # noqa: E501
                        continue
                    # Remapping the name of FP8 kv-scale.
                    name = maybe_remap_kv_scale_name(name, params_dict)
                    if name is None:
                        continue
                    if is_pp_missing_parameter(name, self):
                        continue

                    param = params_dict[name]
                    weight_loader = getattr(
                        param, "weight_loader", default_weight_loader
                    )
                    weight_loader(param, loaded_weight, **kwargs)
            loaded_params.add(name)

config instance-attribute

config = hf_config

lm_head instance-attribute

lm_head = ParallelLMHead(
    vocab_size,
    hidden_size,
    quant_config=quant_config,
    prefix=maybe_prefix(prefix, "lm_head"),
)

logits_processor instance-attribute

logits_processor = LogitsProcessor(
    vocab_size, scale=logit_scale
)

model instance-attribute

model = KimiLinearModel(
    vllm_config=vllm_config,
    prefix=maybe_prefix(prefix, "model"),
)

model_config instance-attribute

model_config = model_config

quant_config instance-attribute

quant_config = quant_config

vllm_config instance-attribute

vllm_config = vllm_config

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/kimi_linear.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()
    self.model_config = vllm_config.model_config
    self.vllm_config = vllm_config
    self.config = self.model_config.hf_config
    quant_config = vllm_config.quant_config
    self.quant_config = quant_config
    self.model = KimiLinearModel(
        vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
    )
    if get_pp_group().is_last_rank:
        self.lm_head = ParallelLMHead(
            self.config.vocab_size,
            self.config.hidden_size,
            quant_config=quant_config,
            prefix=maybe_prefix(prefix, "lm_head"),
        )
    else:
        self.lm_head = PPMissingLayer()
    logit_scale = getattr(self.config, "logit_scale", 1.0)
    self.logits_processor = LogitsProcessor(
        self.config.vocab_size, scale=logit_scale
    )

compute_logits

compute_logits(hidden_states: Tensor) -> Tensor | None
Source code in vllm/model_executor/models/kimi_linear.py
def compute_logits(
    self,
    hidden_states: torch.Tensor,
) -> torch.Tensor | None:
    return self.logits_processor(self.lm_head, hidden_states)

forward

forward(
    input_ids: Tensor,
    positions: Tensor,
    intermediate_tensors: IntermediateTensors | None = None,
    inputs_embeds: Tensor | None = None,
    **kwargs,
) -> Tensor | IntermediateTensors
Source code in vllm/model_executor/models/kimi_linear.py
def forward(
    self,
    input_ids: torch.Tensor,
    positions: torch.Tensor,
    intermediate_tensors: IntermediateTensors | None = None,
    inputs_embeds: torch.Tensor | None = None,
    **kwargs,
) -> torch.Tensor | IntermediateTensors:
    hidden_states = self.model(
        input_ids, positions, intermediate_tensors, inputs_embeds, **kwargs
    )
    return hidden_states

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/kimi_linear.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.model.get_input_embeddings(input_ids)

get_mamba_state_dtype_from_config classmethod

get_mamba_state_dtype_from_config(
    vllm_config: VllmConfig,
) -> tuple[dtype, dtype, dtype, dtype]
Source code in vllm/model_executor/models/kimi_linear.py
@classmethod
def get_mamba_state_dtype_from_config(
    cls,
    vllm_config: "VllmConfig",
) -> tuple[torch.dtype, torch.dtype, torch.dtype, torch.dtype]:
    return MambaStateDtypeCalculator.kda_state_dtype(
        vllm_config.model_config.dtype, vllm_config.cache_config.mamba_cache_dtype
    )

get_mamba_state_shape_from_config classmethod

get_mamba_state_shape_from_config(
    vllm_config: VllmConfig,
) -> tuple[
    tuple[int, ...],
    tuple[int, ...],
    tuple[int, ...],
    tuple[int, ...],
]
Source code in vllm/model_executor/models/kimi_linear.py
@classmethod
def get_mamba_state_shape_from_config(
    cls, vllm_config: "VllmConfig"
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
    parallel_config = vllm_config.parallel_config
    hf_config = vllm_config.model_config.hf_config
    tp_size = parallel_config.tensor_parallel_size
    num_spec = (
        vllm_config.speculative_config.num_speculative_tokens
        if vllm_config.speculative_config
        else 0
    )
    return MambaStateShapeCalculator.kda_state_shape(
        tp_size,
        hf_config.linear_attn_config["num_heads"],
        hf_config.linear_attn_config["head_dim"],
        conv_kernel_size=hf_config.linear_attn_config["short_conv_kernel_size"],
        num_spec=num_spec,
    )

load_weights

load_weights(weights: Iterable[tuple[str, Tensor]])
Source code in vllm/model_executor/models/kimi_linear.py
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
    stacked_params_mapping = [
        # (param_name, shard_name, shard_id)
        (".gate_up_proj", ".gate_proj", 0),
        (".gate_up_proj", ".up_proj", 1),
    ]
    if self.config.is_moe:
        # Params for weights, fp8 weight scales, fp8 activation scales
        # (param_name, weight_name, expert_id, shard_id)
        expert_params_mapping = FusedMoE.make_expert_params_mapping(
            ckpt_gate_proj_name="w1",
            ckpt_down_proj_name="w2",
            ckpt_up_proj_name="w3",
            num_experts=self.config.num_experts,
        )
    else:
        expert_params_mapping = []
    params_dict = dict(self.named_parameters())
    loaded_params: set[str] = set()
    for args in weights:
        name, loaded_weight = args[:2]
        kwargs = args[2] if len(args) > 2 else {}
        if "rotary_emb.inv_freq" in name:
            continue

        spec_layer = get_spec_layer_idx_from_weight_name(self.config, name)
        if spec_layer is not None:
            continue  # skip spec decode layers for main model
        if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
            # Models trained using ColossalAI may include these tensors in
            # the checkpoint. Skip them.
            continue
        for param_name, weight_name, shard_id in stacked_params_mapping:
            if weight_name not in name:
                continue
            # We have mlp.experts[0].gate_proj in the checkpoint.
            # Since we handle the experts below in expert_params_mapping,
            # we need to skip here BEFORE we update the name, otherwise
            # name will be updated to mlp.experts[0].gate_up_proj, which
            # will then be updated below in expert_params_mapping
            # for mlp.experts[0].gate_gate_up_proj, which breaks load.
            if ("mlp.experts." in name) and name not in params_dict:
                continue
            name = name.replace(weight_name, param_name)
            # Skip loading extra bias for GPTQ models.
            if name.endswith(".bias") and name not in params_dict:
                continue
            if is_pp_missing_parameter(name, self):
                continue
            param = params_dict[name]
            weight_loader = param.weight_loader
            weight_loader(param, loaded_weight, shard_id)
            break
        else:
            for idx, (param_name, weight_name, expert_id, shard_id) in enumerate(
                expert_params_mapping
            ):
                if weight_name not in name:
                    continue
                name = name.replace(weight_name, param_name)
                if is_pp_missing_parameter(name, self):
                    continue
                param = params_dict[name]
                weight_loader = param.weight_loader
                weight_loader(
                    param,
                    loaded_weight,
                    name,
                    expert_id=expert_id,
                    shard_id=shard_id,
                )
                break
            else:
                # Skip loading extra bias for GPTQ models.
                if (
                    name.endswith(".bias")
                    and name not in params_dict
                    and not self.config.is_linear_attn
                ):  # noqa: E501
                    continue
                # Remapping the name of FP8 kv-scale.
                name = maybe_remap_kv_scale_name(name, params_dict)
                if name is None:
                    continue
                if is_pp_missing_parameter(name, self):
                    continue

                param = params_dict[name]
                weight_loader = getattr(
                    param, "weight_loader", default_weight_loader
                )
                weight_loader(param, loaded_weight, **kwargs)
        loaded_params.add(name)

KimiLinearModel

Bases: Module

Source code in vllm/model_executor/models/kimi_linear.py
@support_torch_compile
class KimiLinearModel(nn.Module):
    def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
        super().__init__()

        config = vllm_config.model_config.hf_text_config
        model_config = vllm_config.model_config
        cache_config = vllm_config.cache_config
        quant_config = vllm_config.quant_config
        parallel_config = vllm_config.parallel_config
        self.config = config

        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        if get_pp_group().is_first_rank:
            self.embed_tokens = VocabParallelEmbedding(
                config.vocab_size,
                config.hidden_size,
                prefix=f"{prefix}.embed_tokens",
            )
        else:
            self.embed_tokens = PPMissingLayer()

        extra_kwargs = {}

        def get_layer(prefix: str):
            layer_idx = int(prefix.rsplit(".", 1)[1])
            return KimiDecoderLayer(
                config,
                layer_idx,
                cache_config,
                quant_config,
                parallel_config,
                model_config,
                prefix,
                **extra_kwargs,
            )

        self.start_layer, self.end_layer, self.layers = make_layers(
            config.num_hidden_layers,
            get_layer,
            prefix=f"{prefix}.layers",
        )

        if get_pp_group().is_last_rank:
            self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        else:
            self.norm = PPMissingLayer()

        world_size = get_tensor_model_parallel_world_size()
        assert config.num_attention_heads % world_size == 0, (
            "num_attention_heads must be divisible by world_size"
        )

    def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
        return self.embed_tokens(input_ids)

    def forward(
        self,
        input_ids: torch.Tensor | None,
        positions: torch.Tensor,
        intermediate_tensors: IntermediateTensors | None,
        inputs_embeds: torch.Tensor | None = None,
        **kwargs,
    ) -> torch.Tensor:
        if get_pp_group().is_first_rank:
            if inputs_embeds is not None:
                hidden_states = inputs_embeds
            else:
                hidden_states = self.get_input_embeddings(input_ids)
            residual = None
        else:
            assert intermediate_tensors is not None
            hidden_states = intermediate_tensors["hidden_states"]
            residual = intermediate_tensors["residual"]

        for _, layer in enumerate(self.layers[self.start_layer : self.end_layer]):
            hidden_states, residual = layer(
                positions=positions,
                hidden_states=hidden_states,
                residual=residual,
            )

        if not get_pp_group().is_last_rank:
            return IntermediateTensors(
                {"hidden_states": hidden_states, "residual": residual}
            )

        hidden_states, _ = self.norm(hidden_states, residual)
        return hidden_states

config instance-attribute

config = config

embed_tokens instance-attribute

embed_tokens = VocabParallelEmbedding(
    vocab_size, hidden_size, prefix=f"{prefix}.embed_tokens"
)

norm instance-attribute

norm = RMSNorm(hidden_size, eps=rms_norm_eps)

padding_idx instance-attribute

padding_idx = pad_token_id

vocab_size instance-attribute

vocab_size = vocab_size

__init__

__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/kimi_linear.py
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
    super().__init__()

    config = vllm_config.model_config.hf_text_config
    model_config = vllm_config.model_config
    cache_config = vllm_config.cache_config
    quant_config = vllm_config.quant_config
    parallel_config = vllm_config.parallel_config
    self.config = config

    self.padding_idx = config.pad_token_id
    self.vocab_size = config.vocab_size

    if get_pp_group().is_first_rank:
        self.embed_tokens = VocabParallelEmbedding(
            config.vocab_size,
            config.hidden_size,
            prefix=f"{prefix}.embed_tokens",
        )
    else:
        self.embed_tokens = PPMissingLayer()

    extra_kwargs = {}

    def get_layer(prefix: str):
        layer_idx = int(prefix.rsplit(".", 1)[1])
        return KimiDecoderLayer(
            config,
            layer_idx,
            cache_config,
            quant_config,
            parallel_config,
            model_config,
            prefix,
            **extra_kwargs,
        )

    self.start_layer, self.end_layer, self.layers = make_layers(
        config.num_hidden_layers,
        get_layer,
        prefix=f"{prefix}.layers",
    )

    if get_pp_group().is_last_rank:
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
    else:
        self.norm = PPMissingLayer()

    world_size = get_tensor_model_parallel_world_size()
    assert config.num_attention_heads % world_size == 0, (
        "num_attention_heads must be divisible by world_size"
    )

forward

forward(
    input_ids: Tensor | None,
    positions: Tensor,
    intermediate_tensors: IntermediateTensors | None,
    inputs_embeds: Tensor | None = None,
    **kwargs,
) -> Tensor
Source code in vllm/model_executor/models/kimi_linear.py
def forward(
    self,
    input_ids: torch.Tensor | None,
    positions: torch.Tensor,
    intermediate_tensors: IntermediateTensors | None,
    inputs_embeds: torch.Tensor | None = None,
    **kwargs,
) -> torch.Tensor:
    if get_pp_group().is_first_rank:
        if inputs_embeds is not None:
            hidden_states = inputs_embeds
        else:
            hidden_states = self.get_input_embeddings(input_ids)
        residual = None
    else:
        assert intermediate_tensors is not None
        hidden_states = intermediate_tensors["hidden_states"]
        residual = intermediate_tensors["residual"]

    for _, layer in enumerate(self.layers[self.start_layer : self.end_layer]):
        hidden_states, residual = layer(
            positions=positions,
            hidden_states=hidden_states,
            residual=residual,
        )

    if not get_pp_group().is_last_rank:
        return IntermediateTensors(
            {"hidden_states": hidden_states, "residual": residual}
        )

    hidden_states, _ = self.norm(hidden_states, residual)
    return hidden_states

get_input_embeddings

get_input_embeddings(input_ids: Tensor) -> Tensor
Source code in vllm/model_executor/models/kimi_linear.py
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
    return self.embed_tokens(input_ids)

KimiMLAAttention

Bases: Module

Main reference: DeepseekV2 vllm Implementation

Source code in vllm/model_executor/models/kimi_linear.py
class KimiMLAAttention(nn.Module):
    """
    Main reference: DeepseekV2 vllm Implementation
    """

    def __init__(
        self,
        config: KimiLinearConfig,
        hidden_size: int,
        num_heads: int,
        qk_nope_head_dim: int,
        qk_rope_head_dim: int,
        v_head_dim: int,
        q_lora_rank: int | None,
        kv_lora_rank: int,
        rope_theta: float = 10000,
        use_nope: bool = False,
        rope_scaling: dict[str, Any] | None = None,
        cache_config: CacheConfig | None = None,
        quant_config: QuantizationConfig | None = None,
        prefix: str = "",
        **kwargs,
    ) -> None:
        super().__init__()
        self.hidden_size = hidden_size
        self.qk_nope_head_dim = qk_nope_head_dim
        self.qk_rope_head_dim = qk_rope_head_dim
        self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
        self.v_head_dim = v_head_dim
        self.q_lora_rank = q_lora_rank
        self.kv_lora_rank = kv_lora_rank
        self.num_heads = num_heads
        tp_size = get_tensor_model_parallel_world_size()
        self.num_local_heads = num_heads // tp_size
        self.scaling = self.qk_head_dim**-0.5
        self.rope_theta = rope_theta
        self.use_nope = use_nope
        assert self.use_nope is True
        assert self.q_lora_rank is None
        assert rope_scaling is None
        assert num_heads % tp_size == 0
        self.kv_a_proj_with_mqa = ReplicatedLinear(
            self.hidden_size,
            self.kv_lora_rank + self.qk_rope_head_dim,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.kv_a_proj_with_mqa",
        )
        self.q_proj = ColumnParallelLinear(
            self.hidden_size,
            self.num_heads * self.qk_head_dim,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.q_proj",
        )
        self.kv_a_layernorm = RMSNorm(
            self.kv_lora_rank,
            eps=config.rms_norm_eps,
        )
        self.kv_b_proj = ColumnParallelLinear(
            self.kv_lora_rank,
            self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.kv_b_proj",
        )
        self.o_proj = RowParallelLinear(
            self.num_heads * self.v_head_dim,
            self.hidden_size,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.o_proj",
        )

        mla_modules = MLAModules(
            kv_a_layernorm=self.kv_a_layernorm,
            kv_b_proj=self.kv_b_proj,
            rotary_emb=None,
            o_proj=self.o_proj,
            fused_qkv_a_proj=None,
            kv_a_proj_with_mqa=self.kv_a_proj_with_mqa,
            q_a_layernorm=None,
            q_b_proj=None,
            q_proj=self.q_proj,
            indexer=None,
            is_sparse=False,
            topk_indices_buffer=None,
        )
        self.mla_attn = MultiHeadLatentAttentionWrapper(
            self.hidden_size,
            self.num_local_heads,
            self.scaling,
            self.qk_nope_head_dim,
            self.qk_rope_head_dim,
            self.v_head_dim,
            self.q_lora_rank,
            self.kv_lora_rank,
            mla_modules,
            cache_config,
            quant_config,
            prefix,
        )

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        output: torch.Tensor,
    ) -> None:
        output[:] = self.mla_attn(positions, hidden_states)

hidden_size instance-attribute

hidden_size = hidden_size

kv_a_layernorm instance-attribute

kv_a_layernorm = RMSNorm(kv_lora_rank, eps=rms_norm_eps)

kv_a_proj_with_mqa instance-attribute

kv_a_proj_with_mqa = ReplicatedLinear(
    hidden_size,
    kv_lora_rank + qk_rope_head_dim,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.kv_a_proj_with_mqa",
)

kv_b_proj instance-attribute

kv_b_proj = ColumnParallelLinear(
    kv_lora_rank,
    num_heads * (qk_nope_head_dim + v_head_dim),
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.kv_b_proj",
)

kv_lora_rank instance-attribute

kv_lora_rank = kv_lora_rank

mla_attn instance-attribute

mla_attn = MultiHeadLatentAttentionWrapper(
    hidden_size,
    num_local_heads,
    scaling,
    qk_nope_head_dim,
    qk_rope_head_dim,
    v_head_dim,
    q_lora_rank,
    kv_lora_rank,
    mla_modules,
    cache_config,
    quant_config,
    prefix,
)

num_heads instance-attribute

num_heads = num_heads

num_local_heads instance-attribute

num_local_heads = num_heads // tp_size

o_proj instance-attribute

o_proj = RowParallelLinear(
    num_heads * v_head_dim,
    hidden_size,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.o_proj",
)

q_lora_rank instance-attribute

q_lora_rank = q_lora_rank

q_proj instance-attribute

q_proj = ColumnParallelLinear(
    hidden_size,
    num_heads * qk_head_dim,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.q_proj",
)

qk_head_dim instance-attribute

qk_head_dim = qk_nope_head_dim + qk_rope_head_dim

qk_nope_head_dim instance-attribute

qk_nope_head_dim = qk_nope_head_dim

qk_rope_head_dim instance-attribute

qk_rope_head_dim = qk_rope_head_dim

rope_theta instance-attribute

rope_theta = rope_theta

scaling instance-attribute

scaling = qk_head_dim ** -0.5

use_nope instance-attribute

use_nope = use_nope

v_head_dim instance-attribute

v_head_dim = v_head_dim

__init__

__init__(
    config: KimiLinearConfig,
    hidden_size: int,
    num_heads: int,
    qk_nope_head_dim: int,
    qk_rope_head_dim: int,
    v_head_dim: int,
    q_lora_rank: int | None,
    kv_lora_rank: int,
    rope_theta: float = 10000,
    use_nope: bool = False,
    rope_scaling: dict[str, Any] | None = None,
    cache_config: CacheConfig | None = None,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
    **kwargs,
) -> None
Source code in vllm/model_executor/models/kimi_linear.py
def __init__(
    self,
    config: KimiLinearConfig,
    hidden_size: int,
    num_heads: int,
    qk_nope_head_dim: int,
    qk_rope_head_dim: int,
    v_head_dim: int,
    q_lora_rank: int | None,
    kv_lora_rank: int,
    rope_theta: float = 10000,
    use_nope: bool = False,
    rope_scaling: dict[str, Any] | None = None,
    cache_config: CacheConfig | None = None,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
    **kwargs,
) -> None:
    super().__init__()
    self.hidden_size = hidden_size
    self.qk_nope_head_dim = qk_nope_head_dim
    self.qk_rope_head_dim = qk_rope_head_dim
    self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
    self.v_head_dim = v_head_dim
    self.q_lora_rank = q_lora_rank
    self.kv_lora_rank = kv_lora_rank
    self.num_heads = num_heads
    tp_size = get_tensor_model_parallel_world_size()
    self.num_local_heads = num_heads // tp_size
    self.scaling = self.qk_head_dim**-0.5
    self.rope_theta = rope_theta
    self.use_nope = use_nope
    assert self.use_nope is True
    assert self.q_lora_rank is None
    assert rope_scaling is None
    assert num_heads % tp_size == 0
    self.kv_a_proj_with_mqa = ReplicatedLinear(
        self.hidden_size,
        self.kv_lora_rank + self.qk_rope_head_dim,
        bias=False,
        quant_config=quant_config,
        prefix=f"{prefix}.kv_a_proj_with_mqa",
    )
    self.q_proj = ColumnParallelLinear(
        self.hidden_size,
        self.num_heads * self.qk_head_dim,
        bias=False,
        quant_config=quant_config,
        prefix=f"{prefix}.q_proj",
    )
    self.kv_a_layernorm = RMSNorm(
        self.kv_lora_rank,
        eps=config.rms_norm_eps,
    )
    self.kv_b_proj = ColumnParallelLinear(
        self.kv_lora_rank,
        self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
        bias=False,
        quant_config=quant_config,
        prefix=f"{prefix}.kv_b_proj",
    )
    self.o_proj = RowParallelLinear(
        self.num_heads * self.v_head_dim,
        self.hidden_size,
        bias=False,
        quant_config=quant_config,
        prefix=f"{prefix}.o_proj",
    )

    mla_modules = MLAModules(
        kv_a_layernorm=self.kv_a_layernorm,
        kv_b_proj=self.kv_b_proj,
        rotary_emb=None,
        o_proj=self.o_proj,
        fused_qkv_a_proj=None,
        kv_a_proj_with_mqa=self.kv_a_proj_with_mqa,
        q_a_layernorm=None,
        q_b_proj=None,
        q_proj=self.q_proj,
        indexer=None,
        is_sparse=False,
        topk_indices_buffer=None,
    )
    self.mla_attn = MultiHeadLatentAttentionWrapper(
        self.hidden_size,
        self.num_local_heads,
        self.scaling,
        self.qk_nope_head_dim,
        self.qk_rope_head_dim,
        self.v_head_dim,
        self.q_lora_rank,
        self.kv_lora_rank,
        mla_modules,
        cache_config,
        quant_config,
        prefix,
    )

forward

forward(
    positions: Tensor, hidden_states: Tensor, output: Tensor
) -> None
Source code in vllm/model_executor/models/kimi_linear.py
def forward(
    self,
    positions: torch.Tensor,
    hidden_states: torch.Tensor,
    output: torch.Tensor,
) -> None:
    output[:] = self.mla_attn(positions, hidden_states)

KimiMLP

Bases: Module

Source code in vllm/model_executor/models/kimi_linear.py
class KimiMLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
        quant_config: QKVParallelLinear | None = None,
        reduce_results: bool = True,
        prefix: str = "",
    ) -> None:
        super().__init__()

        self.gate_up_proj = MergedColumnParallelLinear(
            hidden_size,
            [intermediate_size] * 2,
            bias=False,
            quant_config=quant_config,
            prefix=f"{prefix}.gate_up_proj",
        )
        self.down_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            quant_config=quant_config,
            reduce_results=reduce_results,
            prefix=f"{prefix}.down_proj",
        )
        if hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {hidden_act}. Only silu is supported for now."
            )
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.down_proj(x)
        return x

act_fn instance-attribute

act_fn = SiluAndMul()

down_proj instance-attribute

down_proj = RowParallelLinear(
    intermediate_size,
    hidden_size,
    bias=False,
    quant_config=quant_config,
    reduce_results=reduce_results,
    prefix=f"{prefix}.down_proj",
)

gate_up_proj instance-attribute

gate_up_proj = MergedColumnParallelLinear(
    hidden_size,
    [intermediate_size] * 2,
    bias=False,
    quant_config=quant_config,
    prefix=f"{prefix}.gate_up_proj",
)

__init__

__init__(
    hidden_size: int,
    intermediate_size: int,
    hidden_act: str,
    quant_config: QKVParallelLinear | None = None,
    reduce_results: bool = True,
    prefix: str = "",
) -> None
Source code in vllm/model_executor/models/kimi_linear.py
def __init__(
    self,
    hidden_size: int,
    intermediate_size: int,
    hidden_act: str,
    quant_config: QKVParallelLinear | None = None,
    reduce_results: bool = True,
    prefix: str = "",
) -> None:
    super().__init__()

    self.gate_up_proj = MergedColumnParallelLinear(
        hidden_size,
        [intermediate_size] * 2,
        bias=False,
        quant_config=quant_config,
        prefix=f"{prefix}.gate_up_proj",
    )
    self.down_proj = RowParallelLinear(
        intermediate_size,
        hidden_size,
        bias=False,
        quant_config=quant_config,
        reduce_results=reduce_results,
        prefix=f"{prefix}.down_proj",
    )
    if hidden_act != "silu":
        raise ValueError(
            f"Unsupported activation: {hidden_act}. Only silu is supported for now."
        )
    self.act_fn = SiluAndMul()

forward

forward(x)
Source code in vllm/model_executor/models/kimi_linear.py
def forward(self, x):
    gate_up, _ = self.gate_up_proj(x)
    x = self.act_fn(gate_up)
    x, _ = self.down_proj(x)
    return x

KimiMoE

Bases: Module

Source code in vllm/model_executor/models/kimi_linear.py
class KimiMoE(nn.Module):
    def __init__(
        self,
        config: KimiLinearConfig,
        quant_config: QuantizationConfig | None = None,
        prefix: str = "",
        layer_idx: int = 0,
    ):
        super().__init__()
        hidden_size = config.hidden_size
        intermediate_size = config.intermediate_size
        moe_intermediate_size = config.moe_intermediate_size
        num_experts = config.num_experts
        moe_renormalize = config.moe_renormalize
        self.tp_size = get_tensor_model_parallel_world_size()
        self.routed_scaling_factor = config.routed_scaling_factor
        self.num_shared_experts = config.num_shared_experts
        self.layer_idx = layer_idx

        if config.hidden_act != "silu":
            raise ValueError(
                f"Unsupported activation: {config.hidden_act}. "
                "Only silu is supported for now."
            )

        # Gate always runs at half / full precision for now.
        self.gate = ReplicatedLinear(
            hidden_size,
            num_experts,
            bias=False,
            quant_config=None,
            prefix=f"{prefix}.gate",
        )

        self.gate.e_score_correction_bias = nn.Parameter(torch.empty(num_experts))

        self.experts = FusedMoE(
            num_experts=num_experts,
            top_k=config.num_experts_per_token,
            hidden_size=hidden_size,
            intermediate_size=moe_intermediate_size,
            reduce_results=False,
            renormalize=moe_renormalize,
            quant_config=quant_config,
            use_grouped_topk=config.use_grouped_topk,
            num_expert_group=config.num_expert_group,
            topk_group=config.topk_group,
            prefix=f"{prefix}.experts",
            scoring_func=config.moe_router_activation_func,
            e_score_correction_bias=self.gate.e_score_correction_bias,
        )

        if self.num_shared_experts is not None:
            intermediate_size = moe_intermediate_size * self.num_shared_experts
            self.shared_experts = KimiMLP(
                hidden_size=config.hidden_size,
                intermediate_size=intermediate_size,
                hidden_act=config.hidden_act,
                quant_config=quant_config,
                reduce_results=False,
                prefix=f"{prefix}.shared_experts",
            )

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        num_tokens, hidden_size = hidden_states.shape
        hidden_states = hidden_states.view(-1, hidden_size)
        if self.num_shared_experts is not None:
            shared_output = self.shared_experts(hidden_states)
        router_logits, _ = self.gate(hidden_states)
        final_hidden_states = (
            self.experts(hidden_states=hidden_states, router_logits=router_logits)
            * self.routed_scaling_factor
        )
        if shared_output is not None:
            final_hidden_states = final_hidden_states + shared_output

        if self.tp_size > 1:
            final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
        return final_hidden_states.view(num_tokens, hidden_size)

experts instance-attribute

experts = FusedMoE(
    num_experts=num_experts,
    top_k=num_experts_per_token,
    hidden_size=hidden_size,
    intermediate_size=moe_intermediate_size,
    reduce_results=False,
    renormalize=moe_renormalize,
    quant_config=quant_config,
    use_grouped_topk=use_grouped_topk,
    num_expert_group=num_expert_group,
    topk_group=topk_group,
    prefix=f"{prefix}.experts",
    scoring_func=moe_router_activation_func,
    e_score_correction_bias=e_score_correction_bias,
)

gate instance-attribute

gate = ReplicatedLinear(
    hidden_size,
    num_experts,
    bias=False,
    quant_config=None,
    prefix=f"{prefix}.gate",
)

layer_idx instance-attribute

layer_idx = layer_idx

num_shared_experts instance-attribute

num_shared_experts = num_shared_experts

routed_scaling_factor instance-attribute

routed_scaling_factor = routed_scaling_factor

shared_experts instance-attribute

shared_experts = KimiMLP(
    hidden_size=hidden_size,
    intermediate_size=intermediate_size,
    hidden_act=hidden_act,
    quant_config=quant_config,
    reduce_results=False,
    prefix=f"{prefix}.shared_experts",
)

tp_size instance-attribute

__init__

__init__(
    config: KimiLinearConfig,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
    layer_idx: int = 0,
)
Source code in vllm/model_executor/models/kimi_linear.py
def __init__(
    self,
    config: KimiLinearConfig,
    quant_config: QuantizationConfig | None = None,
    prefix: str = "",
    layer_idx: int = 0,
):
    super().__init__()
    hidden_size = config.hidden_size
    intermediate_size = config.intermediate_size
    moe_intermediate_size = config.moe_intermediate_size
    num_experts = config.num_experts
    moe_renormalize = config.moe_renormalize
    self.tp_size = get_tensor_model_parallel_world_size()
    self.routed_scaling_factor = config.routed_scaling_factor
    self.num_shared_experts = config.num_shared_experts
    self.layer_idx = layer_idx

    if config.hidden_act != "silu":
        raise ValueError(
            f"Unsupported activation: {config.hidden_act}. "
            "Only silu is supported for now."
        )

    # Gate always runs at half / full precision for now.
    self.gate = ReplicatedLinear(
        hidden_size,
        num_experts,
        bias=False,
        quant_config=None,
        prefix=f"{prefix}.gate",
    )

    self.gate.e_score_correction_bias = nn.Parameter(torch.empty(num_experts))

    self.experts = FusedMoE(
        num_experts=num_experts,
        top_k=config.num_experts_per_token,
        hidden_size=hidden_size,
        intermediate_size=moe_intermediate_size,
        reduce_results=False,
        renormalize=moe_renormalize,
        quant_config=quant_config,
        use_grouped_topk=config.use_grouped_topk,
        num_expert_group=config.num_expert_group,
        topk_group=config.topk_group,
        prefix=f"{prefix}.experts",
        scoring_func=config.moe_router_activation_func,
        e_score_correction_bias=self.gate.e_score_correction_bias,
    )

    if self.num_shared_experts is not None:
        intermediate_size = moe_intermediate_size * self.num_shared_experts
        self.shared_experts = KimiMLP(
            hidden_size=config.hidden_size,
            intermediate_size=intermediate_size,
            hidden_act=config.hidden_act,
            quant_config=quant_config,
            reduce_results=False,
            prefix=f"{prefix}.shared_experts",
        )

forward

forward(hidden_states: Tensor) -> Tensor
Source code in vllm/model_executor/models/kimi_linear.py
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
    num_tokens, hidden_size = hidden_states.shape
    hidden_states = hidden_states.view(-1, hidden_size)
    if self.num_shared_experts is not None:
        shared_output = self.shared_experts(hidden_states)
    router_logits, _ = self.gate(hidden_states)
    final_hidden_states = (
        self.experts(hidden_states=hidden_states, router_logits=router_logits)
        * self.routed_scaling_factor
    )
    if shared_output is not None:
        final_hidden_states = final_hidden_states + shared_output

    if self.tp_size > 1:
        final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
    return final_hidden_states.view(num_tokens, hidden_size)

get_spec_layer_idx_from_weight_name

get_spec_layer_idx_from_weight_name(
    config: KimiLinearConfig, weight_name: str
) -> int | None
Source code in vllm/model_executor/models/kimi_linear.py
def get_spec_layer_idx_from_weight_name(
    config: KimiLinearConfig, weight_name: str
) -> int | None:
    if hasattr(config, "num_nextn_predict_layers") and (
        config.num_nextn_predict_layers > 0
    ):
        layer_idx = config.num_hidden_layers
        for i in range(config.num_nextn_predict_layers):
            if weight_name.startswith(f"model.layers.{layer_idx + i}."):
                return layer_idx + i
    return None